Closing Tues:	$3.6-9$
Closing Thurs:	3.9
Closing next Tues:	3.10
Closing next Thurs:	$4.1(1), 4.1(2)$
Remember: Friday is a Holiday (no class)	

3.9 Related Rates:

1. Draw \& label everything.
2. What you know?

What you want?
3. Equations relating quantities?
4. Differentiate with respect to t.
5. Substitute in your values and solve.

Do NOT substitute until last step.

Entry Task: (Like HW 3.9/3) A kite at an altitude of 400 ft is being blown horizontally at $10 \mathrm{ft} / \mathrm{sec}$ away from the person holding the kite string at ground level. At what rate is the string being let out when 500 ft of string is already out?

Example: (Like HW 3.9/2) One bike is 4 miles east of an intersection, travelling toward the intersection at the rate of 9 mph . At the same time, a $2^{\text {nd }}$ bike is 3 miles south of the intersection and is travelling away from the intersection at a rate of 10 mph .

- At what rate is the distance between them changing?
- Is this distance increasing or decreasing?

Example: (Like 3.6-9/13, 3.9/9)
A 13-foot ladder is leaning against a
wall and its base is slipping away from
the wall at a rate of $3 \mathrm{ft} / \mathrm{sec}$ when it is 5
ft from the wall.
How fast is the top of the ladder
dropping at that moment?

Example: (Like 3.9/6)

A lighthouse is located on a small island 2 km away from the nearest point P on a straight shoreline and its light makes three revolutions per minute.

How fast is the beam of light moving along the shoreline when it is 1 km
from P ?

Other Questions?

3.10 Linear Approximation (Preview)

Idea: "Near" the point ($\mathrm{a}, \mathrm{f}(\mathrm{a})$) the graphs of $y=f(x)$ and the tangent line $y=f^{\prime}(a)(x-a)+f(a)$
are very close together.

We say the tangent line is a linear approximation (or linearization or tangent line approximation) to the function. Sometimes it is written as

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

In other words:
If $x \approx a$, then

$$
f(x) \approx f^{\prime}(a)(x-a)+f(a)
$$

Example: Find the linear approximation of $f(x)=\sqrt{x}$ at $x=81$. Then use it to approximate the value of $\sqrt{82}$.

Example: Find the linearization of $g(x)=\sin (x)$ at $x=0$. Then use it to approximate the value of $\sin (0.03)$.

Example:

Using tangent line approximation estimate the value of $\sqrt[3]{8.5}$.

